Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Inflamm Res ; 17: 2169-2172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628604

RESUMEN

We believe there are serious problems with a recently published and highly publicized paper entitled "Serotonin reduction in post-acute sequelae of viral infection." The blood centrifugation procedure reportedly used by Wong et al would produce plasma that is substantially (over 95%) depleted of platelets. Given this, their published mean plasma serotonin values of 1.2 uM and 2.4 uM for the control/contrast groups appear to be at least 30 to 60 times too high and should be disregarded. The plasma serotonin values reported for the long COVID and viremia patients also should be disregarded, as should any comparisons to the control/contrast groups. We also note that the plasma serotonin means for the two control/contrast groups are not in good agreement. In the "Discussion" section, Wong et al state that their results tend to support the use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of COVID-19, and they encourage further clinical trials of SSRIs. While they state that, "Our animal models demonstrate that serotonin levels can be restored and memory impairment reversed by precursor supplementation or SSRI treatment", it should be noted that no data are presented showing an increase or restoration in circulating serotonin with SSRI administration. In fact, one would expect a marked decline in platelet serotonin due to SSRIs' effective inhibition of the platelet serotonin transporter. Wong et al hypothesize that problems of long COVID arise from too little peripheral serotonin. However, given the frequent presence of a hyperaggregation state in long COVID, and the known augmenting effects of platelet serotonin on platelet aggregation, it is plausible to suggest that reductions in platelet serotonin might be associated with a lessening of the cardiovascular sequelae of COVID-19.

2.
Nat Genet ; 54(9): 1320-1331, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982160

RESUMEN

Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Mutación
3.
J Child Adolesc Psychopharmacol ; 32(2): 122-126, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905409

RESUMEN

Objectives: Maternal 15q11-13 duplication syndrome (dup15q) is one of the most frequently observed and penetrant genetic abnormalities associated with autism spectrum disorder (ASD), and commonly presents with psychiatric symptoms and seizures. Although carbamazepine has been reported as effective in managing comorbid seizures in dup15q, it has not been reported to be used as a mood stabilizer in this population. Methods: We retrospectively reviewed the charts of five consecutive patients presenting with previously diagnosed dup15q and ASD seeking treatment for psychiatric symptoms and, in four of the patients, seizures. These were the only patients with dup15q treated with carbamazepine in the Neurodevelopmental Psychopharmacology Clinic at the University of Illinois at Chicago during the review period. Results: During treatment, carbamazepine was found to be more effective than other mood stabilizers in all five patients, and in one case a better antiepileptic. Symptoms consistent with bipolar mood disorder such as hyperactivity, impulsivity, irritability, mood lability, intrusiveness, and pressured speech were improved with carbamazepine in combination with other psychotropic medications. This improvement was greater than with other mood stabilizers, including oxcarbazepine, valproate, and lamotrigine. In one case, valproate paradoxically worsened symptoms. In three cases, anxiety was improved with carbamazepine when used in conjunction with other medications targeting anxiety. Conclusions: In treating five patients with dup15q, carbamazepine more effectively stabilized mood-related symptoms than alternative treatments. Prospective randomized controlled trials are necessary to confirm this observation.


Asunto(s)
Trastorno del Espectro Autista , Anticonvulsivantes/uso terapéutico , Antimaníacos/uso terapéutico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Benzodiazepinas , Carbamazepina/uso terapéutico , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Convulsiones , Síndrome , Ácido Valproico/uso terapéutico
5.
Biol Psychiatry ; 89(5): 476-485, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229037

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder that encompasses a complex and heterogeneous set of traits. Subclinical traits that mirror the core features of ASD, referred to as the broad autism phenotype (BAP), have been documented repeatedly in unaffected relatives and are believed to reflect underlying genetic liability to ASD. The BAP may help inform the etiology of ASD by allowing the stratification of families into more phenotypically and etiologically homogeneous subgroups. This study explores polygenic scores related to the BAP. METHODS: Phenotypic and genotypic information were obtained from 2614 trios from the Simons Simplex Collection. Polygenic scores of ASD (ASD-PGSs) were generated across the sample to determine the shared genetic overlap between the BAP and ASD. Maternal and paternal ASD-PGSs were explored in relation to BAP traits and their child's ASD symptomatology. RESULTS: Maternal pragmatic language was related to child's social communicative atypicalities. In fathers, rigid personality was related to increased repetitive behaviors in children. Maternal (but not paternal) ASD-PGSs were related to the pragmatic language and rigid BAP domains. CONCLUSIONS: Associations emerged between parent and child phenotypes, with more associations emerging in mothers than in fathers. ASD-PGS associations emerged with BAP in mothers only, highlighting the potential for a female protective factor, and implicating the polygenic etiology of ASD-related phenotypes in the BAP.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Niño , Padre , Femenino , Humanos , Masculino , Madres , Fenotipo
6.
J Neurodev Disord ; 12(1): 22, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32791992

RESUMEN

BACKGROUND: Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism, intellectual disability, hypotonia, and epilepsy. The 15q region harbors genes critical for brain development, particularly UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We recently described an electrophysiological biomarker of the syndrome, characterized by excessive beta oscillations (12-30 Hz), resembling electroencephalogram (EEG) changes induced by allosteric modulation of GABAARs. In this follow-up study, we tested a larger cohort of children with Dup15q syndrome to comprehensively examine properties of this EEG biomarker that would inform its use in future clinical trials, specifically, its (1) relation to basic clinical features, such as age, duplication type, and epilepsy; (2) relation to behavioral characteristics, such as cognition and adaptive function; (3) stability over time; and (4) reproducibility of the signal in clinical EEG recordings. METHODS: We computed EEG power and beta peak frequency (BPF) in a cohort of children with Dup15q syndrome (N = 41, age range 9-189 months). To relate EEG parameters to clinical (study 1) and behavioral features (study 2), we examined age, duplication type, epilepsy, cognition, and daily living skills (DLS) as predictors of beta power and BPF. To evaluate stability over time (study 3), we derived the intraclass correlation coefficients (ICC) from beta power and BPF computed from children with multiple EEG recordings (N = 10, age range 18-161 months). To evaluate reproducibility in a clinical setting (study 4), we derived ICCs from beta power computed from children (N = 8, age range 19-96 months), who had undergone both research EEG and clinical EEG. RESULTS: The most promising relationships between EEG and clinical traits were found using BPF. BPF was predicted both by epilepsy status (R2 = 0.11, p = 0.038) and the DLS component of the Vineland Adaptive Behavior Scale (R2 = 0.17, p = 0.01). Beta power and peak frequency showed high stability across repeated visits (beta power ICC = 0.93, BPF ICC = 0.92). A reproducibility analysis revealed that beta power estimates are comparable between research and clinical EEG (ICC = 0.94). CONCLUSIONS: In this era of precision health, with pharmacological and neuromodulatory therapies being developed and tested for specific genetic etiologies of neurodevelopmental disorders, quantification and examination of mechanistic biomarkers can greatly improve clinical trials. To this end, the robust beta oscillations evident in Dup15q syndrome are clinically reproducible and stable over time. With future preclinical and computational studies that will help disentangle the underlying mechanism, it is possible that this biomarker could serve as a robust measure of drug target engagement or a proximal outcome measure in future disease modifying intervention trials.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Niño , Preescolar , Electroencefalografía , Estudios de Seguimiento , Humanos , Lactante , Reproducibilidad de los Resultados
7.
Nat Rev Genet ; 21(6): 367-376, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32317787

RESUMEN

Autism spectrum disorder (ASD) is often grouped with other brain-related phenotypes into a broader category of neurodevelopmental disorders (NDDs). In clinical practice, providers need to decide which genes to test in individuals with ASD phenotypes, which requires an understanding of the level of evidence for individual NDD genes that supports an association with ASD. Consensus is currently lacking about which NDD genes have sufficient evidence to support a relationship to ASD. Estimates of the number of genes relevant to ASD differ greatly among research groups and clinical sequencing panels, varying from a few to several hundred. This Roadmap discusses important considerations necessary to provide an evidence-based framework for the curation of NDD genes based on the level of information supporting a clinically relevant relationship between a given gene and ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Medicina Basada en la Evidencia/métodos , Estudios de Asociación Genética/métodos , Encéfalo/crecimiento & desarrollo , Cognición/fisiología , Humanos , Discapacidad Intelectual/genética
8.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981491

RESUMEN

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/crecimiento & desarrollo , Secuenciación del Exoma/métodos , Regulación del Desarrollo de la Expresión Génica , Neurobiología/métodos , Estudios de Casos y Controles , Linaje de la Célula , Estudios de Cohortes , Exoma , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Neuronas/metabolismo , Fenotipo , Factores Sexuales , Análisis de la Célula Individual/métodos
9.
Am J Med Genet A ; 182(1): 71-84, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654560

RESUMEN

Duplication of 15q11.2-q13.1 (dup15q syndrome) is one of the most common copy number variations associated with autism spectrum disorders (ASD) and intellectual disability (ID). As with many neurogenetic conditions, accurate behavioral assessment is challenging due to the level of impairment and heterogeneity across individuals. Large-scale phenotyping studies are necessary to inform future clinical trials in this and similar ID syndromes. This study assessed developmental and behavioral characteristics in a large cohort of children with dup15q syndrome, and examined differences based on genetic subtype and epilepsy status. Participants included 62 children (2.5-18 years). Across individuals, there was a wide range of abilities. Although adaptive behavior was strongly associated with cognitive ability, adaptive abilities were higher than cognitive scores. Measures of ASD symptoms were associated with cognitive ability, while parent report of challenging behavior was not. Both genetic subtype and epilepsy were related to degree of impairment across cognitive, language, motor, and adaptive domains. Children with isodicentric duplications and epilepsy showed the greatest impairment, while children with interstitial duplications showed the least. On average, participants with epilepsy experienced seizures over 53% of their lives, and half of children with epilepsy had infantile spasms. Parents of children with isodicentric duplications reported more concerns regarding challenging behaviors. Future trials in ID syndromes should employ a flexible set of assessments, allowing each participant to receive assessments that capture their skills. Multiple sources of information should be considered, and the impact of language and cognitive ability should be taken into consideration when interpreting results.


Asunto(s)
Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Adolescente , Trastorno del Espectro Autista/patología , Niño , Preescolar , Aberraciones Cromosómicas , Duplicación Cromosómica/genética , Cromosomas Humanos Par 15/genética , Estudios de Cohortes , Epilepsia/patología , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Linaje
10.
Am J Med Genet A ; 182(1): 213-218, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31729143

RESUMEN

Nuclear receptor subfamily 2 group F member 1 (NR2F1) is an orphan receptor and transcriptional regulator that is involved in neurogenesis, visual processing and development, and cortical patterning. Alterations in NR2F1 cause Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), a recently described autosomal dominant disorder characterized by intellectual and developmental disabilities and optic atrophy. This study describes the clinical and neurocognitive features of an individual with a de novo nonsense variant in NR2F1 (NM_005654.5:c.82C > T, p.Gln28*), identified by whole exome sequencing. The patient was diagnosed with autism spectrum disorder (ASD) and unlike most previously reported cases, he had no developmental delay, superior verbal abilities (verbal IQ = 141), and high educational attainment despite reduced nonverbal abilities (nonverbal IQ = 63). He had optic nerve hypoplasia with minimal visual impairment as well as mild dysmorphic features. Compared to both age-matched individuals with ASD and healthy controls, the patient showed reductions in manual motor speed, accuracy of saccadic eye movements, and rates of successful behavioral response inhibition. Although the majority of previously reported cases of BBSOAS have been associated with more global intellectual dysfunction, we report on a patient with selective disruption of nonverbal abilities and superior verbal abilities.


Asunto(s)
Factor de Transcripción COUP I/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Atrofia Óptica/genética , Adulto , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Codón sin Sentido/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Atrofia Óptica/fisiopatología , Fenotipo , Secuenciación del Exoma , Adulto Joven
11.
Mol Autism ; 10: 47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31857874

RESUMEN

Background: Diminished cognitive control, including reduced behavioral flexibility and behavioral response inhibition, has been repeatedly documented in autism spectrum disorder (ASD). We evaluated behavioral flexibility and response inhibition in probands and their parents using a family trio design to determine the extent to which these cognitive control impairments represent familial traits associated with ASD. Methods: We examined 66 individuals with ASD (probands), 135 unaffected biological parents, and 76 typically developing controls. Participants completed a probabilistic reversal learning task (PRL) and a stop-signal task (SST) to assess behavioral flexibility and response inhibition respectively. Rates of PRL and SST errors were examined across groups, within families, and in relation to clinical and subclinical traits of ASD. Based on prior findings that subclinical broader autism phenotypic (BAP) traits may co-segregate within families and reflect heritable risk factors, we also examined whether cognitive control deficits were more prominent in families in which parents showed BAP features (BAP+). Results: Probands and parents each showed increased rates of PRL and SST errors relative to controls. Error rates across tasks were not related. SST error rates inter-correlated among probands and their parents. PRL errors were more severe in BAP+ parents and their children relative to BAP- parents and their children. For probands of BAP+ parents, PRL and SST error rates were associated with more severe social-communication abnormalities and repetitive behaviors, respectively. Conclusion: Reduced behavioral flexibility and response inhibition are present among probands and their unaffected parents, but represent unique familial deficits associated with ASD that track with separate clinical issues. Specifically, behavioral response inhibition impairments are familial in ASD and manifest independently from parental subclinical features. In contrast, behavioral flexibility deficits are selectively present in families with BAP characteristics, suggesting they co-segregate in families with parental subclinical social, communication, and rigid personality traits. Together, these findings provide evidence that behavioral flexibility and response inhibition impairments track differentially with ASD risk mechanisms and related behavioral traits.


Asunto(s)
Trastorno del Espectro Autista/psicología , Conducta , Inhibición Psicológica , Adulto , Análisis de Varianza , Niño , Cognición , Femenino , Humanos , Aprendizaje , Masculino , Fenotipo , Análisis y Desempeño de Tareas
12.
Nat Neurosci ; 22(5): 691-699, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988527

RESUMEN

Genome-wide association studies (GWAS) have identified more than 100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here we present integrative risk gene selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes, most of which are not the nearest genes to the GWAS index variants. High-confidence risk genes account for a significantly enriched heritability, as estimated by stratified linkage disequilibrium score regression. Moreover, high-confidence risk genes are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance our understanding of SCZ etiology and potential therapeutics.


Asunto(s)
Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genómica/métodos , Esquizofrenia/genética , Animales , Teorema de Bayes , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Factores de Riesgo
14.
J Hum Genet ; 64(3): 253-255, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30542208

RESUMEN

In view of conflicting reports on the pathogenicity of 15q11.2 CNVs of the breakpoints 1-2 (BP1-BP2) region and lack of association with a specific phenotype, we collected phenotypic data on 51,462 patients referred for genetic testing at two centers (Magee-Womens Hospital of UPMC and Baylor Genetics Laboratories, Baylor College of Medicine). Using array CGH, 262 patients with deletions and 215 with duplications were identified and tested for their association with four phenotypes (developmental delay, dysmorphic features, autism group of disorders, and epilepsy/seizures). Only association of deletions with dysmorphic features was observed (P = 0.013) with low penetrance (3.8%). Our results, viewed in the context of other reports suggesting the lack of a clear phenotypic outcome, underscore the need for detailed phenotypic studies to better understand the pathogenicity of 15q11.2 (BP1-BP2) CNVs.


Asunto(s)
Trastorno Autístico/genética , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 15/genética , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Trastorno Autístico/patología , Estudios de Cohortes , Discapacidades del Desarrollo/patología , Epilepsia/patología , Humanos , Discapacidad Intelectual/patología , Fenotipo
15.
J Am Acad Child Adolesc Psychiatry ; 57(11): 867-875, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30392628

RESUMEN

OBJECTIVE: The serotonin (5-hydroxytryptamine [HT]) system has long been implicated in autism spectrum disorder (ASD). Whole-blood 5-HT level (WB5-HT) is a stable, heritable biomarker that is elevated in more than 25% of children with ASD. Recent findings indicate that the maternal 5-HT system may influence embryonic neurodevelopment, but maternal WB5-HT has not been examined in relation to ASD phenotypes. METHOD: WB5-HT levels were obtained from 181 individuals (3-27 years of age) diagnosed with ASD, 99 of their fathers, and 119 of their mothers. Standardized assessments were used to evaluate cognitive, behavioral, and language phenotypes. RESULTS: Exploratory regression analyses found relationships between maternal WB5-HT and nonverbal IQ (NVIQ), Autism Diagnostic Interview-Revised (ADI-R) Nonverbal Communication Algorithm scores, and overall adaptive function on the Vineland Adaptive Behavior Scales-II. Latent class analysis identified a three-class structure in the assessment data, describing children with low, intermediate, and high severity across measures of behavior, cognition, and adaptive function. Mean maternal WB5-HT differed across classes, with the lowest maternal WB5-HT levels seen in the highest-severity group (Welch F2,46.048 = 17.394, p < .001). Paternal and proband WB5-HT did not differ between classes. CONCLUSION: Maternal WB5-HT is associated with neurodevelopmental outcomes in offspring with ASD. Prospective, longitudinal studies will be needed to better understand the relationship between the function of the maternal serotonin system during pregnancy and brain development. Further studies in animal models may be able to reveal the mechanisms underlying these findings.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Cognición/fisiología , Madres/estadística & datos numéricos , Serotonina/sangre , Adulto , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/genética , Biomarcadores/sangre , Niño , Padre , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Estudios Prospectivos
16.
J Child Psychol Psychiatry ; 59(5): 586-595, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29052841

RESUMEN

BACKGROUND: Inhibitory control deficits are common in autism spectrum disorder (ASD) and associated with more severe repetitive behaviors. Inhibitory control deficits may reflect slower execution of stopping processes, or a reduced ability to delay the onset of behavioral responses in contexts of uncertainty. Previous studies have documented relatively spared stopping processes in ASD, but whether inhibitory control deficits in ASD reflect failures to delay response onset has not been systematically assessed. Further, while improvements in stopping abilities and response slowing are seen through adolescence/early adulthood in health, their development in ASD is less clear. METHODS: A stop-signal test (SST) was administered to 121 individuals with ASD and 76 age and IQ-matched healthy controls (ages 5-28). This test included 'GO trials' in which participants pressed a button when a peripheral target appeared and interleaved 'STOP trials' in which they were cued to inhibit button-presses when a stop-signal appeared at variable times following the GO cue. STOP trial accuracy, RT of the stopping process (SSRT), and reaction time (RT) slowing during GO trials were examined. RESULTS: Relative to controls, individuals with ASD had reduced accuracy on STOP trials. SSRTs were similar across control and ASD participants, but RT slowing was reduced in patients compared to controls. Age-related increases in stopping ability and RT slowing were attenuated in ASD. Reduced stopping accuracy and RT slowing were associated with more severe repetitive behaviors in ASD. DISCUSSION: Our findings show that inhibitory control deficits in ASD involve failures to strategically delay behavioral response onset. These results suggest that reduced preparatory behavioral control may underpin inhibitory control deficits as well as repetitive behaviors in ASD. Typical age-related improvements in inhibitory control during late childhood/early adolescence are reduced in ASD, highlighting an important developmental window during which treatments may mitigate cognitive alterations contributing to repetitive behaviors.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Función Ejecutiva/fisiología , Inhibición Psicológica , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven
17.
Am J Med Genet A ; 173(6): 1656-1662, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28407363

RESUMEN

Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Trastorno Obsesivo Compulsivo/genética , Translocación Genética/genética , Adulto , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno del Espectro Autista/patología , Aberraciones Cromosómicas , Cromosomas Humanos Par 4/genética , Cromosomas Humanos Par 8/genética , Predisposición Genética a la Enfermedad , Humanos , Cariotipificación , Masculino , Trastorno Obsesivo Compulsivo/fisiopatología , Síndrome de Wolf-Hirschhorn/genética , Síndrome de Wolf-Hirschhorn/fisiopatología
18.
Autism Res ; 10(8): 1417-1423, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28401654

RESUMEN

Approximately 30% of individuals with autism spectrum disorder (ASD) have elevated whole blood serotonin (5-HT) levels. Genetic linkage and association studies of ASD and of whole blood 5-HT levels as a quantitative trait have revealed sexual dimorphism. Few studies have examined the presence of a sex difference on hyperserotonemia within ASD. To assess whether the rate of hyperserotonemia is different in males than in females with ASD, we measured whole blood 5-HT levels in 292 children and adolescents with ASD, the largest sample in which this biomarker has been assessed. Based upon previous work suggesting that hyperserotonemia is more common prior to puberty, we focused our analysis on the 182 pre-pubertal children with ASD. 42% of pre-pubertal participants were within the hyperserotonemia range. In this population, we found that males were significantly more likely to manifest hyperserotonemia than females (P = 0.03). As expected, no significant difference was found in the post-pubertal population. Additional work will be needed to replicate this intriguing finding and to understand whether it could potentially explain differences in patterns of ASD risk between males and females. Autism Res 2017, 10: 1417-1423. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista/sangre , Serotonina/sangre , Caracteres Sexuales , Biomarcadores/sangre , Niño , Femenino , Humanos , Masculino , Riesgo , Factores Sexuales
19.
Mol Autism ; 8: 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344757

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is one of the most highly heritable neuropsychiatric disorders, but underlying molecular mechanisms are still unresolved due to extreme locus heterogeneity. Leveraging meaningful endophenotypes or biomarkers may be an effective strategy to reduce heterogeneity to identify novel ASD genes. Numerous lines of evidence suggest a link between hyperserotonemia, i.e., elevated serotonin (5-hydroxytryptamine or 5-HT) in whole blood, and ASD. However, the genetic determinants of blood 5-HT level and their relationship to ASD are largely unknown. METHODS: In this study, pursuing the hypothesis that de novo variants (DNVs) and rare risk alleles acting in a recessive mode may play an important role in predisposition of hyperserotonemia in people with ASD, we carried out whole exome sequencing (WES) in 116 ASD parent-proband trios with most (107) probands having 5-HT measurements. RESULTS: Combined with published ASD DNVs, we identified USP15 as having recurrent de novo loss of function mutations and discovered evidence supporting two other known genes with recurrent DNVs (FOXP1 and KDM5B). Genes harboring functional DNVs significantly overlap with functional/disease gene sets known to be involved in ASD etiology, including FMRP targets and synaptic formation and transcriptional regulation genes. We grouped the probands into High-5HT and Normal-5HT groups based on normalized serotonin levels, and used network-based gene set enrichment analysis (NGSEA) to identify novel hyperserotonemia-related ASD genes based on LoF and missense DNVs. We found enrichment in the High-5HT group for a gene network module (DAWN-1) previously implicated in ASD, and this points to the TGF-ß pathway and cell junction processes. Through analysis of rare recessively acting variants (RAVs), we also found that rare compound heterozygotes (CHs) in the High-5HT group were enriched for loci in an ASD-associated gene set. Finally, we carried out rare variant group-wise transmission disequilibrium tests (gTDT) and observed significant association of rare variants in genes encoding a subset of the serotonin pathway with ASD. CONCLUSIONS: Our study identified USP15 as a novel gene implicated in ASD based on recurrent DNVs. It also demonstrates the potential value of 5-HT as an effective endophenotype for gene discovery in ASD, and the effectiveness of this strategy needs to be further explored in studies of larger sample sizes.


Asunto(s)
Trastorno del Espectro Autista/genética , Factores de Transcripción Forkhead/genética , Histona Demetilasas con Dominio de Jumonji/genética , Mutación , Proteínas Nucleares/genética , Proteínas Represoras/genética , Serotonina/sangre , Proteasas Ubiquitina-Específicas/genética , Trastorno del Espectro Autista/metabolismo , Endofenotipos/sangre , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Análisis de Secuencia de ADN/métodos , Transducción de Señal
20.
Pharmacogenomics ; 18(4): 403-414, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28244813

RESUMEN

Autism spectrum disorder (ASD) is characterized by persistent deficits in social communication and interactions as well as restricted, repetitive behaviors and interests. Pharmacologic interventions are often needed to manage irritability, aggressive behaviors and hyperactivity. Pharmacogenomic studies have investigated genetic associations with treatment response and side effects in an attempt to better understand drug mechanisms in hopes of optimizing the balance of symptom improvement versus side effects. The majority of pharmacogenomic studies to date have focused on antipsychotics, antidepressants and stimulants that are the most commonly utilized medication classes for ASD. This review is a comprehensive examination of the existing pharmacogenomic studies in ASD highlighting the current state of knowledge regarding genetic variation influencing pharmacokinetics and pharmacodynamics, and associated clinical outcomes.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Farmacogenética/métodos , Antipsicóticos/uso terapéutico , Trastorno del Espectro Autista/diagnóstico , Estimulantes del Sistema Nervioso Central/uso terapéutico , Humanos , Risperidona/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...